,

Pandas for Everyone

Python Data Analysis

Paperback Engels 2018 9780134546933
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This tutorial teaches students everything they need to get started with Python programming for the fast-growing field of data analysis. Daniel Chen tightly links each new concept with easy-to-apply, relevant examples from modern data analysis.

 

Unlike other beginner's books, this guide helps today's newcomers learn both Python and its popular Pandas data science toolset in the context of tasks they'll really want to perform. Following the proven Software Carpentry approach to teaching programming, Chen introduces each concept with a simple motivating example, slowly offering deeper insights and expanding your ability to handle concrete tasks.

Specificaties

ISBN13:9780134546933
Taal:Engels
Bindwijze:Paperback

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<!--[if gte mso 9]><xml> </xml><![endif]--> <p style="margin:0px;"></p> <p style="margin:0px;">Foreword xix</p> <p style="margin:0px;">Preface xxi</p> <p style="margin:0px;">Acknowledgments xxvii</p> <p style="margin:0px;">About the Author xxxi</p> <p style="margin:0px;"></p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part I: Introduction 1</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 1: Pandas DataFrame Basics 3</p> <p style="margin:0px;"></p> <p style="margin:0px;">1.1 Introduction 3</p> <p style="margin:0px;">1.2 Loading Your First Data Set 4</p> <p style="margin:0px;">1.3 Looking at Columns, Rows, and Cells 7</p> <p style="margin:0px;">1.4 Grouped and Aggregated Calculations 18</p> <p style="margin:0px;">1.5 Basic Plot 23</p> <p style="margin:0px;">1.6 Conclusion 24</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 2: Pandas Data Structures 25</p> <p style="margin:0px;">2.1 Introduction 25</p> <p style="margin:0px;">2.2 Creating Your Own Data 26</p> <p style="margin:0px;">2.3 The Series 28</p> <p style="margin:0px;">2.4 The DataFrame 36</p> <p style="margin:0px;">2.5 Making Changes to Series and DataFrames 38</p> <p style="margin:0px;">2.6 Exporting and Importing Data 43</p> <p style="margin:0px;">2.7 Conclusion 47</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 3: Introduction to Plotting 49</p> <p style="margin:0px;">3.1 Introduction 49</p> <p style="margin:0px;">3.2 Matplotlib 51</p> <p style="margin:0px;">3.3 Statistical Graphics Using matplotlib 56</p> <p style="margin:0px;">3.4 Seaborn 61</p> <p style="margin:0px;">3.5 Pandas Objects 83</p> <p style="margin:0px;">3.6 Seaborn Themes and Styles 86</p> <p style="margin:0px;">3.7 Conclusion 90</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part II: Data Manipulation 91</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 4: Data Assembly 93</p> <p style="margin:0px;"></p> <p style="margin:0px;">4.1 Introduction 93</p> <p style="margin:0px;">4.2 Tidy Data 93</p> <p style="margin:0px;">4.3 Concatenation 94</p> <p style="margin:0px;">4.4 Merging Multiple Data Sets 102</p> <p style="margin:0px;">4.5 Conclusion 107</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 5: Missing Data 109</p> <p style="margin:0px;">5.1 Introduction 109</p> <p style="margin:0px;">5.2 What Is a NaN Value? 109</p> <p style="margin:0px;">5.3 Where Do Missing Values Come From? 111</p> <p style="margin:0px;">5.4 Working with Missing Data 116</p> <p style="margin:0px;">5.5 Conclusion 121</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 6: Tidy Data 123</p> <p style="margin:0px;">6.1 Introduction 123</p> <p style="margin:0px;">6.2 Columns Contain Values, Not Variables 124</p> <p style="margin:0px;">6.3 Columns Contain Multiple Variables 128</p> <p style="margin:0px;">6.4 Variables in Both Rows and Columns 133</p> <p style="margin:0px;">6.5 Multiple Observational Units in a Table (Normalization) 134</p> <p style="margin:0px;">6.6 Observational Units Across Multiple Tables 137</p> <p style="margin:0px;">6.7 Conclusion 141</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part III: Data Munging 143</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 7: Data Types 145</p> <p style="margin:0px;"></p> <p style="margin:0px;">7.1 Introduction 145</p> <p style="margin:0px;">7.2 Data Types 145</p> <p style="margin:0px;">7.3 Converting Types 146</p> <p style="margin:0px;">7.4 Categorical Data 152</p> <p style="margin:0px;">7.5 Conclusion 153</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 8: Strings and Text Data 155</p> <p style="margin:0px;">8.1 Introduction 155</p> <p style="margin:0px;">8.2 Strings 155</p> <p style="margin:0px;">8.3 String Methods 158</p> <p style="margin:0px;">8.4 More String Methods 160</p> <p style="margin:0px;">8.5 String Formatting 161</p> <p style="margin:0px;">8.6 Regular Expressions (RegEx) 164</p> <p style="margin:0px;">8.7 The regex Library 170</p> <p style="margin:0px;">8.8 Conclusion 170</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 9: Apply 171</p> <p style="margin:0px;">9.1 Introduction 171</p> <p style="margin:0px;">9.2 Functions 171</p> <p style="margin:0px;">9.3 Apply (Basics) 172</p> <p style="margin:0px;">9.4 Apply (More Advanced) 177</p> <p style="margin:0px;">9.5 Vectorized Functions 182</p> <p style="margin:0px;">9.6 Lambda Functions 185</p> <p style="margin:0px;">9.7 Conclusion 187</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 10: Groupby Operations: Split–Apply–Combine 189</p> <p style="margin:0px;">10.1 Introduction 189</p> <p style="margin:0px;">10.2 Aggregate 190</p> <p style="margin:0px;">10.3 Transform 197</p> <p style="margin:0px;">10.4 Filter 201</p> <p style="margin:0px;">10.5 The pandas.core.groupby.DataFrameGroupBy Object 202</p> <p style="margin:0px;">10.6 Working with a MultiIndex 207</p> <p style="margin:0px;">10.7 Conclusion 211</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 11: The datetime Data Type 213</p> <p style="margin:0px;">11.1 Introduction 213</p> <p style="margin:0px;">11.2 Python’s datetime Object 213</p> <p style="margin:0px;">11.3 Converting to datetime 214</p> <p style="margin:0px;">11.4 Loading Data That Include Dates 217</p> <p style="margin:0px;">11.5 Extracting Date Components 217</p> <p style="margin:0px;">11.6 Date Calculations and Timedeltas 220</p> <p style="margin:0px;">11.7 Datetime Methods 221</p> <p style="margin:0px;">11.8 Getting Stock Data 224</p> <p style="margin:0px;">11.9 Subsetting Data Based on Dates 225</p> <p style="margin:0px;">11.10 Date Ranges 227</p> <p style="margin:0px;">11.11 Shifting Values 230</p> <p style="margin:0px;">11.12 Resampling 237</p> <p style="margin:0px;">11.13 Time Zones 238</p> <p style="margin:0px;">11.14 Conclusion 240</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part IV: Data Modeling 241</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 12: Linear Models 243</p> <p style="margin:0px;"></p> <p style="margin:0px;">12.1 Introduction 243</p> <p style="margin:0px;">12.2 Simple Linear Regression 243</p> <p style="margin:0px;">12.3 Multiple Regression 247</p> <p style="margin:0px;">12.4 Keeping Index Labels From sklearn 251</p> <p style="margin:0px;">12.5 Conclusion 252</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 13: Generalized Linear Models 253</p> <p style="margin:0px;">13.1 Introduction 253</p> <p style="margin:0px;">13.2 Logistic Regression 253</p> <p style="margin:0px;">13.3 Poisson Regression 257</p> <p style="margin:0px;">13.4 More Generalized Linear Models 260</p> <p style="margin:0px;">13.5 Survival Analysis 260</p> <p style="margin:0px;">13.6 Conclusion 264</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 14: Model Diagnostics 265</p> <p style="margin:0px;">14.1 Introduction 265</p> <p style="margin:0px;">14.2 Residuals 265</p> <p style="margin:0px;">14.3 Comparing Multiple Models 270</p> <p style="margin:0px;">14.4 k-Fold Cross-Validation 275</p> <p style="margin:0px;">14.5 Conclusion 278</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 15: Regularization 279</p> <p style="margin:0px;">15.1 Introduction 279</p> <p style="margin:0px;">15.2 Why Regularize? 279</p> <p style="margin:0px;">15.3 LASSO Regression 281</p> <p style="margin:0px;">15.4 Ridge Regression 283</p> <p style="margin:0px;">15.5 Elastic Net 285</p> <p style="margin:0px;">15.6 Cross-Validation 287</p> <p style="margin:0px;">15.7 Conclusion 289</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 16: Clustering 291</p> <p style="margin:0px;">16.1 Introduction 291</p> <p style="margin:0px;">16.2 k-Means 291</p> <p style="margin:0px;">16.3 Hierarchical Clustering 297</p> <p style="margin:0px;">16.4 Conclusion 301</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part V: Conclusion 303</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 17: Life Outside of Pandas 305</p> <p style="margin:0px;"></p> <p style="margin:0px;">17.1 The (Scientific) Computing Stack 305</p> <p style="margin:0px;">17.2 Performance 306</p> <p style="margin:0px;">17.3 Going Bigger and Faster 307</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Chapter 18: Toward a Self-Directed Learner 309</p> <p style="margin:0px;">18.1 It’s Dangerous to Go Alone! 309</p> <p style="margin:0px;">18.2 Local Meetups 309</p> <p style="margin:0px;">18.3 Conferences 309</p> <p style="margin:0px;">18.4 The Internet 310</p> <p style="margin:0px;">18.5 Podcasts 310</p> <p style="margin:0px;">18.6 Conclusion 311</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Part VI: Appendixes 313</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix A: Installation 315</p> <p style="margin:0px;"></p> <p style="margin:0px;">A.1 Installing Anaconda 315</p> <p style="margin:0px;">A.2 Uninstall Anaconda 316</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix B: Command Line 317</p> <p style="margin:0px;">B.1 Installation 317</p> <p style="margin:0px;">B.2 Basics 318</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Appendix C: Project Templates 319</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix D: Using Python 321</p> <p style="margin:0px;"></p> <p style="margin:0px;">D.1 Command Line and Text Editor 321</p> <p style="margin:0px;">D.2 Python and IPython 322</p> <p style="margin:0px;">D.3 Jupyter 322</p> <p style="margin:0px;">D.4 Integrated Development Environments (IDEs) 322</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Appendix E: Working Directories 325</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix F: Environments 327</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix G: Install Packages 329</p> <p style="margin:0px;"></p> <p style="margin:0px;">G.1 Updating Packages 330</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Appendix H: Importing Libraries 331</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix I: Lists 333</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix J: Tuples 335</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix K: Dictionaries 337</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix L: Slicing Values 339</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix M: Loops 341</p> <p style="margin:0px;"></p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Appendix N: Comprehensions 343</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix O: Functions 345</p> <p style="margin:0px;"></p> <p style="margin:0px;">O.1 Default Parameters 347</p> <p style="margin:0px;">O.2 Arbitrary Parameters 347</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;"></p> <p style="margin:0px;">Appendix P: Ranges and Generators 349</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix Q: Multiple Assignment 351</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix R: numpy ndarray 353</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix S: Classes 355</p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Appendix T: Odo: The Shapeshifter 357</p> <p style="margin:0px;"></p> <p style="margin:0px;">&nbsp;</p> <p style="margin:0px;">Index 359</p> <!--[if gte mso 9]><xml> Normal 0 false false false EN-US X-NONE X-NONE </xml><![endif]--> <!--[if gte mso 9]><xml> </xml><![endif]--> <!--[if gte mso 10]> <![endif]-->

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Pandas for Everyone