Survey of Text Mining

Clustering, Classification, and Retrieval

Gebonden Engels 2003 2004e druk 9780387955636
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory.

As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments.

This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.

Specificaties

ISBN13:9780387955636
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:244
Uitgever:Springer New York
Druk:2004

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

I: CLUSTERING & CLASSIFICATION: * Cluster-preserving dimension reduction methods for efficient classification of text data * Automatic discovery of similar words * Simultaneous clustering and dynamic keyword weighting for text documents * Feature selection and document clustering
II: INFORMATION EXTRACTION & RETRIEVAL: * Vector space models for search and cluster mining * HotMiner--Discovering hot topics from dirty text * Combining families of information retrieval algorithms using meta-learning
III: TREND DETECTION: * Trend and behavior detection from Web queries * A survey of emerging trend detection in textual data mining
* Index

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Survey of Text Mining